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O xygen uptake (VO2) represents a measure of the body’s 
capacity to supply oxygen to skeletal muscle to perform 
physical work. VO2 re�ects the integration of multiple 

organ systems and cellular processes, including pulmonary venti-
lation, oxygen carrying capacity and transport through the circu-
latory system, cardiac output, central nervous system recruitment 
of motor units, oxygen di�usion and extraction at the capillary–
skeletal muscle level, as well as mitochondrial respiration. VO2max 
de�nes the limits of these processes and is thus widely considered 
the gold-standard measure of cardiorespiratory �tness (CRF)1,2.

It is thus not surprising that VO2max (as a direct measure of 
CRF) has been �rmly established as a powerful prognostic marker 
of cardiovascular disease (CVD) and all-cause mortality3. VO2max’s 
inverse relationship with CVD and mortality risk applies to both 
its baseline measure (intrinsic VO2max4,5) and capacity to improve 
VO2max through regular physical activity (acquired or adaptive 
VO2max; ΔVO2max)6,7. Consequently, there has been signi�cant 
interest in characterizing the relative contributions of di�erent 
organ systems to VO2max. Several lines of evidence point to cardiac 
output and oxygen delivery as being the principal determinants of 
VO2max8,9; however, even the precise contributions of these pro-
cesses, including oxygen di�usion, convection and mitochondrial 
oxidative capacity, are not fully resolved10,11.

Furthermore, both baseline measures of VO2max and ΔVO2max 
appear to vary greatly in the general population. In the HERITAGE 

Family Study, a subgroup of 429 apparently healthy but sedentary 
members of family units, who were of European descent, under-
went direct measurements of baseline VO2max through cardiopul-
monary exercise testing (CPET) on 2 separate days, and the s.d.  
(9 ml O2 kg−1 min−1) was ~29% of the mean (31 ml O2 kg−1 min−1) 
a�er adjustment for age, sex, body mass and body composition12. 
Similarly, among 720 HERITAGE participants who completed 
the supervised 20-week endurance-exercise training programme, 
the s.d. was 53% of the mean change in VO2max. Interestingly, 
there was no relationship between baseline and ΔVO2max in this 
group (r2 =  0.011). �is suggests that these traits may have di�er-
ent biologic underpinnings and underscores our inability to predict 
VO2max ‘trainability' using existing clinical factors13.

Given our incomplete understanding of the biologic basis of CRF 
and its close relationship to long-term health outcomes, uncover-
ing the molecular determinants of VO2max may provide insights 
into the mechanistic links between physical �tness and well-being. 
Indeed, this has become an important goal of the medical commu-
nity. Prior e�orts to characterize both baseline and acquired CRF 
at the molecular level have included genetic analyses, transcrip-
tomic pro�ling of skeletal muscle and plasma metabolomics14–16. 
Although biochemical pro�ling of plasma proteins has yielded 
insights into di�erences in substrate metabolism among di�erent 
�tness states in animal models17 and has provided biologic ‘snap-
shots’ of human metabolism18, few data exist regarding plasma  
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Maximal oxygen uptake (VO 2max) is a direct measure of human cardiorespiratory �tness and is associated with health. 
However, the molecular determinants of interindividual di�erences in baseline (intrinsic) VO 2max, and of increases of 
VO 2max in response to exercise training ( ΔVO 2max), are largely unknown. Here, we measure ~5,000 plasma proteins using an 
a�nity-based platform in over 650 sedentary adults before and after a 20-week endurance-exercise intervention and identify 
147 proteins and 102 proteins whose plasma levels are associated with baseline VO 2max and ΔVO 2max, respectively. Addition 
of a protein biomarker score derived from these proteins to a score based on clinical traits improves the prediction of an indi -
vidual’s ΔVO 2max. We validate �ndings in a separate exercise cohort, further link 21 proteins to incident all-cause mortality 
in a community-based cohort and reproduce the speci�city of ~75% of our key �ndings using antibody-based assays. Taken 
together, our data shed light on biological pathways relevant to cardiorespiratory �tness and highlight the potential additive 
value of protein biomarkers in identifying exercise responsiveness in humans.
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proteomics pro�ling of CRF in humans, particularly in the context 
of exercise training. �ese limitations are in part due to the tech-
nical challenges involved in capturing the highly dynamic range 
of circulating proteins. Advancements in aptamer-based pro�ling 
methods now allow for the high-throughput measurement of over 
5,000 proteins19. �is technology spans a dynamic range of at least 
7 orders of magnitude (~100 fM–1 µM) with demonstrated high 
assay reproducibility across both hospital- and population-based 
cohorts20,21, and was recently applied in the HERITAGE study22.

Here, we sought to compare the circulating proteomic pro�les of 
baseline VO2max as well as its adaptation to an exercise programme 
by applying a large-scale, a�nity-based platform in more than 
650 healthy but sedentary participants before and a�er a 20-week 
supervised endurance-exercise training intervention. We hypothe-
sized that plasma protein signatures associated with VO2max would 
re�ect its integrative biology and highlight proteins related to skel-
etal muscle, hematopoiesis and the vascular system, among other 
determinants of CRF. Further, given that clinical traits are weakly 
correlated with VO2max changes following exercise training, we 
anticipated that the addition of plasma proteins would improve the 
capacity to predict VO2max responsiveness. Finally, given that both 
baseline VO2max as well its capacity to change in response to exercise 
training are associated with future risk of death, we tested whether 
plasma proteins related to these measures would be associated with 
incident all-cause mortality in a separate population-based study.

Results
HERITAGE participant characteristics. �e HERITAGE cohort 
was composed of adult parents and their biologic o�spring. �e 
mean (s.d.) age of the full cohort (n =  745) used for baseline VO2max 
analyses was 34.3 (13.4) years; 288 were African American (39%), 
409 were women (55%) and 503 were o�spring (68%). Mean (s.d.) 
baseline VO2max was 2,345 (726) ml min−1. Among the participants 
with VO2max measurements before and a�er exercise training 
(n =  654), the mean ΔVO2max was 383 (203) ml O2 min−1 (Table 1).

Plasma proteins associated with baseline levels of VO2max. We 
measured ~5,000 proteins using a multiplexed, single-stranded 

DNA aptamer (SOMAmers) assay (Supplementary Table 1). We �rst  
tested for age- and sex-adjusted protein associations with baseline 
VO2max in the o�spring generation (n =  503) and then sought 
to replicate our �ndings in the parent generation (n =  242).  
We identi�ed 94 proteins that were associated with VO2max in the 
o�spring by using a false-discovery rate (FDR) threshold of <1%. 
Fi�y of 94 proteins were associated with VO2max in the parents at 
nominal signi�cance (P <  0.05) and 90/94 were directionally con-
sistent (Fig. 1). We subsequently collapsed these subgroups for all 
further analyses.

In the full cohort, we identi�ed 147 circulating proteins that 
were associated with baseline VO2max (Fig. 2), including 85 pro-
teins that were positively associated and 62 proteins negatively 
associated in analyses that were adjusted for age, sex, body mass 
index (BMI) and race (Supplementary Table 2). Proteins posi-
tively associated with baseline VO2max spanned organ systems 
and biologic processes relevant to CRF including angiogenesis 
(for example extracellular matrix protein 1 (ECM1) and anthrax 
toxin receptor 2 (ANTXR2)), coagulation and hematopoiesis (for 
example, complement decay-accelerating factor (DAF) and tetra-
nectin (TN)) and lipid metabolism (for example apolipoprotein 
F (APOF) and lipase member K (LIPK)). Interestingly, we found 
a large number of circulating proteins related to striated muscle 
structure and function (Fig. 3 and Supplementary Table 3). �ese 
included actin and myosin stabilizing molecules (for example, 
alpha-actinin 2 (ACTN2) and myomesin-2 (MYOM2)); proteins 
involved in muscle contraction (for example, troponin-I (TNNI2) 
and myosin-binding protein C (MYBPC1)); and two essential myo-
sin light-chain elements (MYL3 and MYL6B) that regulate force 
production during muscular cross-bridge cycles. We also identi�ed 
several muscle-isoform-speci�c enzymes involved in glycolysis in 
plasma, including beta-enolase (ENOB), ALDOA, phosphoglycer-
ate mutase 1 (PGAM1) and 2 (PGAM2) and lactate dehydrogenase 
alpha (LDHA) and beta (LDHB).

�ese baseline cross-sectional analyses also identi�ed several 
well-known markers of metabolic dysregulation known to be posi-
tively associated with adiposity, including leptin, CRP and insu-
lin, which were inversely associated with baseline VO2max. �us, 
we adjusted for additional measures of body composition—body 
fat percentage and fat-free mass—to further examine the role of 
adiposity in our results. We found that the relationships between 
these proteins and VO2max were no longer signi�cant a�er adjust-
ment for body fat percentage but remained signi�cant a�er adjust-
ment for fat-free mass (Supplementary Table 4). In contrast to 
these markers of metabolic dysregulation, the striated muscle pro-
teins described above (and in Supplementary Table 3) maintained 
their correlation with baseline VO2max a�er adjustment for body 
fat percentage but not fat-free mass, suggesting that their asso-
ciation with CRF may proceed through their relationship to lean 
body mass.

Among the 85 proteins positively associated with baseline 
VO2max following multivariate adjustment, 25 were known to 
be secreted based on UniProt Consortium data (Supplementary  
Table 2). �e group of secreted proteins included multiple proteins 
related to bone homeostasis, including members of osteoblast dif-
ferentiation (SPARC-related modular calcium binding protein 1 
(SMOC1)), bone metabolism via TGF-ß signalling (NOG, bone 
morphogenic protein 8B (BMP8B)) and structural components of 
hyaline cartilage (COL9A1, COMP, EPYC; Extended Data Fig. 1).

Test results for the interaction of generation, sex and race on 
protein–VO2max relationships are shown in Supplementary Table 5.  
Although we identi�ed 23 protein–generation interactions at  
nominal signi�cance (P value <  0.05; highlighted in Supplementary 
Table 2), all were directionally consistent among parents and o�-
spring. Similarly, all 20 protein X sex interactions were direction-
ally consistent among males and females. Only Tartrate-resistant 

Table 1 |  HER ITAGE cohort clinical characteristics

Clinical characteristics Participants with 
baseline V O2max 
(n=

Participants with 
baseline and 
post-training V O2max 
(n=

Age, mean (s.d.), years 34.3 (13.4) 34.8 (13.6)

Female, n (%) 409 (54.9) 361 (55.2)

European descent, n (%) 457 (61.3) 424 (64.8)

BMI, median 
(interquartile range), 
kg/m 2

25.5 (22.4–29.7) 25.5 (22.5–29.7)

Maximal oxygen uptake, mean (s.d.), ml min −1

 Baseline 2,345 (726) 2,348 (732.5)

  Change after exercise 
training

– 383 (202.8)

  SBP, mean (s.d.), 
mmHg

119 (12.0) 119 (11.8)

  DBP, mean (s.d.), 
mmHg

69 (8.9) 68 (8.8)

  Resting heart rate,  
mean (s.d.)

65 (8.9) 65 (8.9)

Mean (s.d.) and median (25–75%) values are shown.
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acid phosphatase type 5 (ACP5) and Neural cell adhesion molecule 
L1-like protein (NRCAM) were directionally di�erent among the 
29 protein-VO2max associations that were di�erent between racial 
groups, with both ACP5 and NRCAM having a positive associa-
tion with VO2max among African Americans and negative asso-
ciation among Caucasians (ACP5, β =  2.5 and −93.6, respectively;  
P for interaction =  0.003; NRCAM, β =  21.1 and −10.6, respectively;  
P for interaction =  0.02). All data have been made available and are 
available through the NIH Common Fund Molecular Transducers 
of Physical Activity Consortium (MoTrPAC; https://motrpac-data.
org/related-studies/heritage-proteomics).

Validation of baseline VO2max �ndings in an external cohort. To 
further assess the generalizability of our �ndings, we performed a 
similar proteomics screen in a separate cohort of abdominally obese 
individuals who were enroled in a dose–response trial of endurance 
exercise23. Participants in the validation study subgroup were older 
(mean age =  47) and had larger body mass (median BMI =  32.8) 
than HERITAGE participants. A higher percentage of the valida-
tion study subgroup was female (71%), and all participants were of 
European descent (Supplementary Table 6). Of the top 147 proteins 
associated with baseline VO2max in HERITAGE, 107 were avail-
able in the validation dataset. Seventy-nine proteins were direction-
ally consistent, and 24 met statistical signi�cance in the validation 

cohort in a linear regression model adjusted for age, sex and BMI 
(P <  0.05; Supplementary Table 7).

Proteins associated with VO2max changes to exercise training. 
We found 102 baseline proteins that were associated with ΔVO2max 
in a linear regression model adjusted for age, sex, BMI, race and 
the baseline level of VO2max (Supplementary Table 8). �e proteins 
with the strongest associations with ΔVO2max included: 5� nucleo-
tidase (NT5E), a cell-surface protein that hydrolyses extracellular 
nucleotides into membrane permeable nucleosides and in which 
cognate gene variants have been associated with premature arterial 
calci�cation24; IL-22 binding protein (IL22RA2), a soluble receptor 
whose ligand is involved in insulin and glucose homeostasis25; and 
�bromodulin (FMOD), a secreted protein that has been implicated 
in tissue repair and myogenic regulation through its interaction 
with myostatin26.

A generation–protein interaction on ΔVO2max was found for 
four proteins, with hepcidin (LEAP1) having directionally dif-
ferent associations among parents and o�spring (Supplementary 
Table 9). Eleven proteins demonstrated a sex–protein interaction, 
with β-1,3-galactosyltransferase (B3GALT1) and triggering recep-
tor expressed on myeloid cells 1 (TREM1) having directionally 
di�erent associations among males and females. Among the 18 pro-
teins that demonstrated a race–protein interaction on ΔVO2max, 
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6 demonstrated directionally di�erent associations among African 
Americans and those of European descent: C–C motif chemokine 
27 precursor (CCL27), retinal rod rhodopsin-sensitive cGMP 
3�,5�-cyclic phosphodiesterase subunit delta (PDE6D), phos-
phatidylinositol polyphosphate 5-phosphatase type IV (INP5E), 
plexin-A1 (PLXA1), pleiotropin (PTN), and EGF-like repeat and 
discoidin I-like domain-containing protein 3 (EDIL3).

We next performed gene set enrichment analysis (GSEA) to fur-
ther elucidate biochemical pathways among this set of proteins, as 
well as those previously identi�ed in the baseline VO2max analyses 
(Supplementary Tables 10 and 11, respectively). Proteins negatively 

associated with ΔVO2max were most enriched for ECM-related 
proteins (the ‘matrisome’)27 (Fig. 4a,b). Positively associated pro-
teins, however, were enriched for core signalling pathways that 
include platelet-derived growth factor receptor, neurotrophin 
and hepatocyte growth factor pathway signalling, among others  
(Fig. 4a,c,d). �ese biochemical pathways contrast with those 
enriched a�er GSEA was applied to proteins ranked by their asso-
ciation with baseline VO2max (Fig. 4e).

We also compared the group of proteins associated with base-
line VO2max with those associated with adaptive VO2max changes 
to exercise training and found minimal overlap between the two 
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groups. Only �ve proteins, T132B, ATF6A, COL9A1, INS and 
PIANP, were associated with both baseline VO2max and ΔVO2max.

Plasma proteins improve prediction of ΔVO2max responses. 
Given the vast heterogeneity in VO2max changes that occur with 
exercise training, as described above, and that clinical factors 
account for a limited amount of the variance in VO2max train-
ability15, we sought to determine whether baseline plasma proteins 
could improve our ability to predict VO2max changes in response to 
exercise training. Because baseline VO2max and VO2max changes 
with exercise training are minimally correlated, we tested to see 
whether proteins could help predict VO2max changes relative to 
one’s baseline VO2max level (ΔVO2max/baseline VO2max). We 
selected a relative VO2max change threshold of 15%, given that the 
median value among the cohort was ~16% (4.9 ml O2 kg−1 min−1) 
and a 15% change represented >  1 metabolic equivalent (1 MET), 
a clinically meaningful unit that has been related to >10% relative  
risk reduction in CVD and all-cause mortality in a series of longi-
tudinal cohorts3.

We �rst performed receiver–operating characteristic (ROC) 
analyses using a clinical trait model that included age, sex, race and 
BMI for relative VO2max changes >  15%. �e area under of the curve 
(AUC) was 0.62 (P =  0.91) (Fig. 5). Feature selection and elastic net 
regression modelling of the 5,000 proteins yielded a �nal panel of 
56 proteins (Supplementary Table 12). We next added our protein 
panel to the clinical trait model, and the AUC signi�cantly increased 
to 0.81 (P =  0.00018). With regard to the operator characteristics, 

we found 79% sensitivity, 71% speci�city, positive predictive value 
of 66% and negative predictive value of 83% for relative VO2max 
changes >  15%. In a subsequent model that included the same 
clinical traits but only the group of proteins that both overlapped 
with an antibody-based proteomics platform (see ‘Complementary 
data to support aptamer speci�city') and demonstrated moderate 
to strong correlation between both platforms (7/10 proteins; SELE, 
TCL1A, COMP, CREG1, STC1, IL1RL2, LILRA2; ρ =  0.41–0.91), 
the operator characteristics were similar but performed slightly 
worse (AUC =  0.75, Extended Data Fig. 2), suggesting that there is 
added information provided by the remaining protein targets in our 
main model.

Association of VO2max-related proteins and mortality. We pre-
viously performed proteomics pro�ling in the Framingham Heart 
Study (FHS) O�spring Study using �rst a 1.1 k-plex (n =  821 par-
ticipants) and then an updated 1.3 k-plex version (n =  1,092) of 
the aptamer-based proteomics platform used in HERITAGE28,29. 
�e clinical characteristics of the FHS sample are presented in 
Supplementary Table 13. Among the 102 proteins that were asso-
ciated with ΔVO2max in HERITAGE, 20 were available in both 
batches of FHS. �irty-six out of the 147 proteins associated with 
baseline VO2max were available in the FHS.

Of 1,909 FHS participants, 551 died a�er a mean (s.d.) follow-up 
of 13.6 (5.6) years. In age- and sex-adjusted analyses, 12 out of 36 
proteins associated with baseline VO2max and 9 out of 20 pro-
teins associated with ΔVO2max were also associated with incident 
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all-cause mortality (FDR q <  0.1; Table 2). We next performed step-
wise regression using these protein sets (12 and 9 proteins, respec-
tively) to estimate the percentage variation in all-cause mortality 
explained by each protein beyond age, sex and batch. Among the 
proteins associated with baseline VO2max, gelsolin (GSN) was the 
most signi�cantly associated with all-cause mortality (hazard ratio 
(HR), 0.71; FDR q =  9.1 × 10−13) and explained 3.4% of the variation 
beyond age and sex. Among proteins associated with ΔVO2max, 
macrophage metalloelastase (MMP12) was the most signi�cantly 
associated with all-cause mortality (HR, 1.34; FDR q =  1.2 × 10−7), 
explaining 1.8% of the variation in outcome.

Complementary data to support aptamer speci�city. We tested 
the reproducibility of our top aptamer-based �ndings in HERITAGE 
speci�c samples using Olink’s antibody-based proteomics platform 
(Olink Explore). Clinical characteristics of the random sample from 
HERITAGE are shown in Supplementary Table 14. Among the 21 
proteins signi�cantly associated with incident all-cause mortality, 
12 protein targets were available on both platforms. Nine out of 12 
of the protein targets were highly correlated. In addition, among the 
top protein targets associated with either baseline or ΔVO2max that 
did not overlap with our all-cause mortality �ndings (Supplementary 
Table 15 and Tables 2 and 3 in Supplementary Data), an additional 
13 proteins were available on both platforms. Ten of 13 assays dem-
onstrated strong correlations. Taken together, 19 out of 25 of our top 
aptamer-based protein �ndings from HERITAGE were well corre-
lated with an equivalent antibody-based assay (both sets of protein 
correlations shown in Fig. 6).

In addition, we leveraged mass spectrometry (MS)-based and 
genetic assays to support the speci�city of the aptamer assays for 
our most signi�cant �ndings. Among the 21 proteins signi�cantly 
associated with incident all-cause mortality, genome-wide signi�-
cant associations at cis loci (within 1 Mb of the transcription start 
site for the cognate gene of the protein) were identi�ed for 17, 
consistent with the speci�city of the aptamer–protein relationship. 
Aptamer speci�city for two additional proteins (B2M and MB) was 
con�rmed by MS30. Among the top 25 �ndings in both our baseline 
VO2max and ΔVO2max analyses, 23 and 24 were available for testing 
across genetic and MS-based analyses, respectively. �e speci�city  

of 11/23 proteins associated with baseline VO2max and 12/24 
proteins associated with ΔVO2max was supported by these tests 
(Supplementary Table 15).

Discussion
VO2max—as a direct measure of CRF—re�ects the body’s ability to 
transfer oxygen to skeletal muscle during sustained physical activ-
ity, and is thus a quanti�able measure of functional capacity. It has 
emerged as an important prognostic marker of future health risk 
that adds value beyond traditional risk factors3. While both base-
line VO2max and the adaptive changes in VO2max in response to 
regular exercise provide valuable information about health status, 
these traits are largely unrelated to each other, a fact that under-
scores our limited understanding of their biologic basis and links 
to long-term health outcomes. Here, we performed large-scale 
plasma proteomic pro�ling in over 650 individuals with directly 
measured VO2max before and a�er an endurance-exercise inter-
vention to illuminate the biochemical features of baseline CRF and 
its adaptation to regular exercise. �ese analyses produced four 
notable �ndings. First, there was a broad and diverse set of circu-
lating proteins associated with both baseline VO2max levels and its 
changes in response to exercise training. Second, there was mini-
mal overlap between the proteomic pro�les of these distinct clini-
cal traits. �ird, the addition of a plasma protein score to baseline 
clinical traits improved the predictive accuracy of clinically sig-
ni�cant improvements in VO2max to exercise training. Finally, key 
proteins that are correlated with baseline VO2max or ΔVO2max 
were also associated with incident all-cause mortality in a separate 
population-based cohort.

Proteins are important regulators of biologic processes and, like 
CRF, re�ect an individual’s current health state as well as future 
risks22. �e plasma proteome encompasses proteins from all tissues, 
making it an attractive medium to study the integrative biology of 
CRF. Indeed, we identi�ed circulating proteins that spanned many 
of the organ systems involved in determining VO2max, including 
the nervous, musculoskeletal, pulmonary, haematologic and cir-
culatory systems. �ese included tissue-speci�c, structural and 
functional proteins (for example, striated muscle, Fig. 3) and pro-
teins with signal peptide sequences (for example, secreted proteins; 
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Supplementary Table 2), as well as several proteins of uncertain  
function or not predicted to be secreted. Although these latter 
proteins may re�ect tissue leakage or aberrantly secreted proteins, 
recent evidence suggests that traditional annotation methods may 
not fully account for proteins released into circulation via extra-
cellular vesicles31. Indeed, our �nding that a number of glycolytic 
enzymes, including fructose bisphosphate aldolase A (ALDOA), 
β-enolase 3 (ENO3) and lactate dehydrogenase (LDHB and LDHA), 
were present in the blood are consistent with those from Whitham 
et al.31, who demonstrated a rise in plasma levels during acute bouts 
of exercise. �e mechanistic relevance of these �ndings remains 
unknown, and additional research is needed to understand whether 
these enzymes have unanticipated functional e�ects in circulation 
or are biomarkers of physiologic states.

Among a group of classically secreted proteins, we identi�ed sev-
eral relevant to bone homeostasis that were positively associated with 
baseline VO2max (Extended Data Figure 1). �is group included 
BMP8B, an adipokine that regulates cartilage and bone develop-
ment and has also been shown to induce brown-adipose-tissue 
thermogenesis32 and adipocyte neurovascular remodelling33, and 
SMOC1, a regulator of osteoblast di�erentiation relevant in physi-
ologic cardiac hypertrophy34. We cannot localize the tissue origin of 
these circulating proteins, but our �ndings highlight the emerging 
paradigm of bone as an important endocrine organ involved in tis-
sue crosstalk and exercise adaptation and motivate further interro-
gation of our data35.

Few data describing the plasma proteomic pro�les of baseline 
VO2max exist22,36, and to our knowledge this is the �rst study to 
investigate large-scale proteomic relationships with longitudinal 
VO2max adaptations. Santos-Parker and colleagues36 performed 
aptamer-based proteomics using a smaller-scale (1.1 k-plex) plat-
form among a group of 47 sedentary or exercise-trained young men 
and women, and older men. �e authors performed gene network 
and gene ontology (GO)-based annotation to identify biological 
processes associated with those in the exercise-trained state. More 
recently, Williams et al.22 applied aptamer-based proteomic pro�l-
ing in HERITAGE to generate a predictive model of cross-sectional 
VO2max based on 115 proteins, using a training set that included 
50% of samples from participants at baseline and 50% a�er com-
pleting exercise training.

While there was overlap among some of the broad biologic pro-
cesses identi�ed by Santos-Parker et al. (for example, autophagy 
and vasculogenesis) or individual proteins found by Williams et al. 
(~23% of our �ndings overlapped), our baseline VO2max �ndings 
di�ered from these for several reasons. First, in contrast to these 
studies, our analyses were performed separately using only pretrain-
ing or post-training measures of VO2max. Our baseline analyses did 
not include values obtained a�er the HERITAGE exercise interven-
tion, which may re�ect adaptive changes in VO2max, a trait that is 
uncorrelated to its intrinsic value13. In addition, we used absolute 
values of VO2max (ml O2 min−1) and adjusted for clinical charac-
teristics in contrast to the univariate analyses of weight-adjusted 

Table 2 |  Proteins associated with baseline or ΔVO2max in HER ITAGE and all-cause mortality in the FHS O�spring Study

Gene name Protein name Adjusted HR 95% C I FDR q 
value

Variation explained 
by protein (%)

Baseline VO 2max

 GSN a Gelsolin 0.71 0.65 0.78 9.1 × 10–13 3.00

 CRPa C-reactive protein 1.24 1.13 1.36 8.2 × 10–5

 B2M a β2-microglobulin 1.21 1.09 1.33 1.6 × 10–3 1.00

 ECM1a Extracellular matrix protein 1 0.84 0.77 0.93 2.9 × 10–3

 MB a–c Myoglobin 0.87 0.79 0.96 1.7 × 10–2 0.22

 FCGR3B a–c Low-a�nity immunoglobulin gamma Fc region receptor III-B 1.13 1.04 1.23 1.7 × 10–2

 ACP5 a–c Tartrate-resistant acid phosphatase type 5 1.14 1.03 1.27 3.1 × 10–2 0.17

 PLGa Plasminogen 0.90 0.82 0.98 4.4 × 10–2 0.45

 NRCAM a,b Neuronal cell adhesion molecule 0.90 0.83 0.98 4.6 × 10–2 –

 CFBa Complement factor B 1.11 1.01 1.22 5.4 × 10–2 –

 ENPP7a–c Ectonucleotide pyrophosphatase/phosphodiesterase family 
member 7

1.11 1.01 1.21 5.4 × 10–2 –

 NRXN3 a Neurexin-3-β 0.90 0.83 0.99 5.4 × 10–2 –

ΔVO 2max

 MMP12a–c Macrophage metalloelastase 1.34 1.22 1.48 1.2 × 10–7 1.80

 FAPa–c Prolyl endopeptidase FAP 0.78 0.72 0.85 3.8 × 10–7

 ANGPT2 a–c Angiopoietin-2 1.21 1.10 1.33 6.7 × 10–4 0.47

 STC1a–c Stanniocalcin-1 1.19 1.09 1.30 1.8 × 10–3 0.74

 CCL27 a,b C–C motif chemokine 27 1.16 1.06 1.28 7.3 × 10–3 –

 IL11RAa Interleukin-11 receptor subunit α 0.86 0.79 0.94 7.3 × 10–3 0.54

 ERBB3a,b Receptor tyrosine-protein kinase erbB-3 0.86 0.78 0.94 8.3 × 10–3 0.21

 ACAN a,c Aggrecan 0.87 0.80 0.96 1.7 × 10–2 –

 IMDH2 Inosine-5�-monophosphate dehydrogenase 1.12 1.03 1.23 3.3 × 10–2 –

Cox proportional hazards analysis was performed for both the proteins associated with baseline VO2max and those associated with VO 2max and all-cause mortality, adjusting for age, sex and batch. 
Proteins from each analysis that were statistically signi�cant (FDR q<
column for those proteins retained in the �nal model. aAptamer speci�city supported by pQTLs and/or MS-based proteomics in population-based data (Supplementary Table 15). bAptamer targets available 
for comparison on Olink Explore platform in HERITAGE subset ( n= cProteins with Spearman correlation >  0.4 on aptamer and antibody-based platforms in HERITAGE subset.
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VO2max (ml O2 kg−1 min−1) performed by Williams et al.22. 
Adjustments for age, sex and race probably signi�cantly contrib-
uted to the di�erences between our groups’ �ndings, owing to their 
relationships with CRF as previously documented and underscored 
in our interaction analyses37–39.

Interestingly, when we performed additional adjustments for 
body-composition measures, we found that proteins closely asso-
ciated with adiposity (for example, C-reactive protein, leptin and 
insulin) were no longer signi�cant a�er adjusting for body fat per-
centage, but remained highly associated with VO2max in a model 
adjusted for fat-free mass, similar to our main model using BMI. 
Although the main in�uence of body mass on VO2max is medi-
ated by fat-free mass, these data support prior �ndings that adi-
pose tissue may contribute to VO2max beyond di�erences in lean 

body weight40. Overall, there was modest overlap between the pro-
teins related to baseline VO2max in the models adjusted for body 
fat percentage and fat-free mass compared with the BMI-adjusted 
model (61 proteins, 48% overlap and 15 proteins, 56% over-
lap, respectively), whereas there was only one common protein 
(insulin-like growth factor binding protein 1 (IGFBP1)) among the 
fat-free-mass-adjusted and body-fat-percentage-adjusted models 
(Supplementary Table 4). �ese �ndings, coupled with the attenu-
ation of striated-muscle-speci�c protein associations with baseline 
VO2max a�er adjustment for lean body mass, highlight the impor-
tance of using standardized body size and composition adjustments 
for VO2max when comparing results across studies.

We believe that the limited number of derivation proteins that 
achieved statistical signi�cance in the external validation cohort 

NRCAM: ρ = 0.336 P  = 0.0014 SMOC1: ρ = 0.251 P  = 0.019 PTK7: ρ = 0.133 P  = 0.22 CCL27: ρ = 0.056 P  = 0.6 SEZ6L2: ρ = 0.001 P  = 0.99

ROBO2: ρ = 0.537 P  = 6.9 × 10 –8 NT5E: ρ = 0.535 P  = 7.8 × 10 –8 FCGR3B: ρ = 0.502 P  = 7.3 × 10 –7 MB: ρ = 0.49 P  = 1.3 × 10 –6 ERBB3: ρ = 0.342 P  = 0.0011

ACAN: ρ = 0.66 P  = 2.6 × 10 –12 RGMA: ρ = 0.657 P  = 3.7 × 10 –12 SERPINA11: ρ = 0.653
P  = 5.2  × 10 –12 STC1: ρ = 0.611 P  = 2.7 × 10 –10 SPON2: ρ = 0.584 P  = 2.4 × 10 –9

ANGPT2: ρ = 0.781 P  = 2.9 × 10 –19 COL9A1: ρ = 0.759 P  = 1.1 × 10 –17 ACP5: ρ = 0.725 P  = 1.4 × 10 –15 SCG3: ρ = 0.725 P  = 1.5 × 10 –15 MMP12: ρ = 0.694 P  = 6.9 × 10 –14

LEP: ρ = 0.965  P  = 5.7 × 10 –52 ENPP7: ρ = 0.927 P  = 2 × 10 –38 ENPP5: ρ = 0.895 P  = 7.1 × 10 –32 FAP: ρ = 0.812 P  = 8.6 × 10 –22 GGH: ρ = 0.797 P  = 1.7 × 10 –20
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re�ects the large di�erences in sample size between the two stud-
ies (n =  745 in HERITAGE versus n =  91 in the validation study) 
and the directional consistency of protein–VO2max relationships 
(79/107) better re�ects the stability of our �ndings across these 
studies. Further, given the known age- and body-size-related e�ects 
on proteomic pro�les, as demonstrated in HERITAGE, we believe 
that large di�erences in the clinical characteristics between the two 
studies—even a�er restricting the validation cohort to age- and 
BMI-speci�c limits—impact the interpretation of our �ndings. We 
encourage additional validation of our �ndings; however, we are 
unaware of any other longitudinal, large-scale proteomic studies 
that include directly measured VO2max at the moment.

�e distinct proteomic pro�les of baseline VO 2max and its 
exercise-induced changes that we observed are consistent with prior 
clinical observations demonstrating a lack of correlation between 
these traits13,14. �e molecular mechanisms that underlie these dif-
ferences are not well understood, and prior e�orts to character-
ize CRF using candidate gene analyses41, gene-expression data for 
skeletal muscle42 and genome-wide association (GWAS) studies43 
have been limited by small sample sizes, lack of replication and the 
inherent challenges in applying reductionist strategies to describe a 
complex trait.

Using GSEA, we found nonrandom associations with base-
line VO2max in pathways related to hematopoiesis and angiogen-
esis (pathway participants included: chitinase 1 (CHIT1), haeme 
oxygenase 2 (HMOX2), cAMP-dependent protein kinase A 
(PRKACA), extracellular matrix protein 1 (ECM1)), the comple-
ment and coagulation systems (CD55, complement factor B precur-
sor (CFB), co�lin-1 (CFI), plasminogen precursor (PLG), heparin 
cofactor 2 (SERPIND1)) and metabolic processes, including glycol-
ysis, as described above (Supplementary Table 11a,b). �ese �nd -
ings are consistent with those recently published from HERITAGE 
using integrative genomic analyses from GWAS and skeletal-muscle 
expression data in participants of European descent44. �ere, Ghosh 
et al. identi�ed several gene loci that highlighted key determinants 
of CRF that we found using GSEA and through manual annotation 
(for example, skeletal muscle function (SGCG, DMRT2), cardiovas-
cular physiology (CASQ2, ATE1) and hematopoiesis (PICALM)).

In contrast to our baseline VO2max �ndings, we observed pathway 
enrichment re�ecting proteins involved in extracellular matrix regu-
lation (collagen alpha-1 (III) chain (COL3A1), COL9A1 COL10A1, 
aggrecan core protein (ACAN) and macrophage metalloelastase 
(MMP12)), key signalling pathways (for example, platelet-derived 
growth factor receptor B (PDGFRB) and hypoxia-induced factor 1 
(HIF-1) signalling) and autophagy (for example, guanine nucleo-
tide exchange factor (VAV3), co�lin-1 (CFL1)), among others, 
that were related to VO2max responses to the exercise programme 
(Supplementary Table 10). �ese pathways were also present in a 
group of 16 over-represented Kyoto Encyclopedia of Genes and 
Genomes (KEGG) pathways in GSEA previously performed using 
GWAS from HERITAGE45. While many of the proteins encoded by 
the relevant genes from HERITAGE genomic analyses were intra-
cellular and were not captured on our plasma proteomics platform, 
our shared �ndings regarding relevant pathways point to possible 
biologic underpinnings that re�ect or possibly mediate the dif-
ferences between these two traits. Ongoing e�orts to incorporate 
additional molecular pro�ling data in the study of �tness traits, 
including the NIH-sponsored initiative, Molecular Transducers of 
Physical Activity Consortium (MoTrPAC: NCT03960827), will fur-
ther advance our understanding of these processes.

We also identi�ed �ve circulating proteins that were associated 
with both VO2max traits. Although variants in TMEM132B have 
been associated with lean body mass46, and insulin may also be 
correlated with both traits through its relationship to body com-
position, the relationships of COL9A1, PIANP and ATF6A with 
VO2max are unclear and remain the subject of future exploration.

Our protein biomarker analyses highlight the current lack of 
predictive capacity for exercise-induced VO2max responses and 
the potential for large-scale plasma protein pro�ling for biomarker 
discovery. Although individual clinical traits such as age, sex, race 
and BMI have all been shown to in�uence VO2max, their collec-
tive ability to predict a clinically meaningful response in VO2max 
to exercise training was modest, and no other readily available bio-
markers exist. �e addition of our protein score helped identify at 
a high percentage (negative predictive value =  83%) those individu-
als unable to modestly improve their VO2max despite undergoing a 
standardized, supervised exercise training programme. If validated 
in an external cohort, these �ndings would help with the early iden-
ti�cation of individuals who may bene�t from alternative lifestyle 
interventions or additional therapeutics to improve their CRF.

Finally, our observation that plasma proteins related to both 
baseline VO2max and its trainability are also associated with future 
mortality risk highlights the potential value of biochemical pro�l-
ing to better understand the mechanistic links between CRF and 
long-term health outcomes. �e strongest relationship among both 
sets of proteins was gelsolin (Table 2), both a secreted and intra-
cellular protein with multiple cellular functions. Gelsolin was posi-
tively associated with baseline VO2max (β =  56.3; FDR =  0.014) and 
inversely associated with incident all-cause mortality (HR =  0.71; 
95% CI, 0.65–0.78), explaining ~3% of the variation in mortality 
a�er adjustment for age and sex in stepwise regression. Prior groups 
have linked lower plasma gelsolin levels to adverse outcomes in 
people with sepsis47 and end-stage renal disease48, and most recently 
higher gelsolin levels were associated with a decreased risk of con-
gestive heart failure a�er adjusting for established risk factors49. Our 
data demonstrating its inverse association with all-cause mortality 
in a large population-based cohort extend these �ndings. Whether 
gelsolin is a biomarker or potential mediator of CRF and long-term 
health remains unclear. Gelsolin’s most well-studied role relates to 
intracellular actin �lament severing and cytoskeletal remodelling50; 
however, its secreted form predominantly comes from striated mus-
cle and has been shown to function as an extracellular scavenger of 
actin51 and in�ammatory intermediates52, as well as a participant in 
signal transduction pathways relevant to CRF, including the PI3K 
pathway53. Additional research into gelsolin’s role in cardiometa-
bolic health is warranted by these recent �ndings.

�ere are several limitations to our work. First, HERITAGE is a 
single-arm study and thus VO2max adaptations may re�ect unmea-
sured factors beyond the exercise-training stimuli. Leisure-time 
physical activity was not measured; however, all participants were 
sedentary for 6 months prior to enrolment. �e aptamer-based plat-
form that we utilized targets ~5,000 proteins; however, this tech-
nology is biased towards circulating proteins and does not provide 
complete coverage of the plasma proteome. Further, a�nity-based 
assays, such as aptamer technology, are subject to nonspeci�c bind-
ing and may have limitations in their performance in response to 
post-translational protein modi�cations54. To address these con-
cerns, we measured protein levels of 25 of our top �ndings using 
an orthogonal, antibody-based platform in a random subset of 
88 HERITAGE samples and found that 18 out of 25 protein tar-
gets were correlated with our aptamer-based results. Among the 
7 proteins with a Spearman correlation <  0.5, 2 aptamer targets 
(SMOC1 and ERBB3) have variants in cis (located within 1 Mb of 
the transcription start site of the gene encoding the protein) that 
are highly associated with protein levels in internal HERITAGE 
genetic-protein analyses (SMOC1, P =  5.9 × 10–8; ERBB3, P =  2.16 
× 10–6). In addition, �ve (CCL27, PTK7, SMOC1, NRCAM and 
ERBB3) aptamer measurements had cis genotype-protein quan-
titative trait loci (cis-pQTL) relationships from publicly available 
and existing population-based human genetics studies, and one 
protein (MB) was validated using a multiple-reaction-monitoring 
MS-based method (Supplementary Table 15). Although we cannot 
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resolve the reason for the lack of a stronger correlation between 
these target proteins, these additional data support the speci�city of 
our aptamer-based �ndings. Ultimately, we recognize the need for 
additional con�rmation to validate the remaining analytes in the 
platform. E�orts to do so are ongoing22, and all of our primary data 
have been made available to the broader scienti�c community for 
subsequent e�orts. �e proteomics platform includes a broad group 
of proteins; however, we are unable to identify their tissue origin. 
We limited the number of adjustments in our analyses relating pro-
teins to all-cause mortality because our central goal was to assess 
the presence of shared protein biology between CRF and long-term 
health outcomes, thus these �ndings cannot explain the speci�c 
mechanisms through which this occurs nor can they be used as bio-
markers of risk prediction without additional work. We also lim-
ited our analyses of VO2max changes to linear methods, thus there 
may be additional insights yielded by using nonlinear methods. Our 
tests for interaction among race, sex and generation among protein–
VO2max relationships may not have been su�ciently powered, and 
our use of nominal statistical signi�cance may have yielded false 
positive results, particularly given that the great majority of interac-
tions were directionally consistent between groups.

In summary, we identi�ed a large number of circulating proteins 
that are associated with VO2max and highlight distinct pro�les 
that exist for its baseline state as well as its adaptation to endurance 
exercise training. While our �ndings highlight speci�c proteins and 
biochemical pathways associated with these traits, further analyses 
of these data should yield additional biologic insights and motivate 
studies in model systems to both identify the sources of these pro-
teins and evaluate their functional signi�cance.

Methods
HERITAGE Family Study.
participants have been described55

and people of European descent, totalling 763 sedentary participants (62% of 
European descent) between the ages of 17 and 65 years, were enroled in a 20-week 
training study of graded endurance exercise training across 4 clinical centres in 
the United States and Canada. Participants were healthy but sedentary over the 
previous 3 months and were free from apparent cardiometabolic disease. A total 
of 745 participants who had baseline measures of VO2max and plasma samples 
were included in cross-sectional analyses, whereas 654 participants who completed 
exercise training and had complete data were used for longitudinal analyses. 
Written informed consent was obtained from all participants in the HERITAGE 
Family Study. HERITAGE study consent was reviewed and the research performed 
in these analyses was approved by Beth Israel Deaconess Medical Center’s 
institutional review board.

Cardiopulmonary exercise testing and VO2max. Two maximal CPETs were 
performed on separate days, at least 48 hours apart, before and a�er the 20-week 
exercise training programme, using a cycle ergometer (model 800S, SensorMedics) 
connected to a metabolic cart (model 2900, SensorMedics). Standard gas-exchange 
measures were obtained as an average of 20-second intervals. �e criteria used 
for the attainment of VO2max were de�ned as: a respiratory exchange ratio >1.1, 
plateau in VO2 uptake (change of <100 ml/min in the last 3 consecutive 20-second 
averages) and a HR within 10 beats/minute of the maximal level predicted by 
age. All participants met at least one of these criteria in one of the two tests12, but 
most met two or more56. �e average of the two measurements before and a�er 
exercise training were used as VO2max unless the values di�ered by more than 
5%, in which case the higher value was used. �e correlation between VO2max 
measurements between the two tests (r =  0.97), coe�cient of variations (CVs, 5%) 
and reproducibility among clinical centres were excellent57. We used absolute  
(ml O2 min−1) rather than weight-adjusted (ml O2 kg−1 min−1) measures of 
VO2max so that body mass changes that occurred a�er exercise testing were not 
incorporated into our assessment of ΔVO2max.

Exercise training protocol and plasma sampling. Participants exercised 3 
times per week for 20 weeks, beginning at 30 minutes/session and increasing to 
50 minutes/session for the �nal 6 weeks of the programme. Exercise intensity 
increased from the heart rate associated with 55% VO2max obtained during 
baseline CPET to the heart rate associated with 75% VO2max over the �nal 8 
weeks of training. Cycle ergometers were electronically programmed to maintain 
a training heart rate by adjusting the power output. Each exercise session for all 
participants was continuously monitored by trained sta�. Fasting plasma samples 
were collected in EDTA tubes from peripheral intravenous catheters prior to 

the beginning of the exercise training programme and at 24 hours following 
completion of the �nal exercise session.

 Aptamer-based method. Detailed analytic methods of the 
SOMAscan assay have been described19–21

at −80 

DNA aptamers (~5,000 SOMAmer). Plasma samples had either 0 freeze–thaw 

two-step, streptavidin-bead-based immobilization process. Aptamers eluted from 

microarray chip. Samples were normalized to 12 hybridization control sequences 
within each microarray and across plates, using the median signal for each 
dilution. We have previously reported median intra- and interassay CVs for the 
SOMAscan assay of ~5% (ref. 58).

Antibody-based method. We subsequently performed additional proteomics 
pro�ling using an antibody-based technology (Olink) on a random sample 
(n =  88) from the HERITAGE study to determine the reproducibility of our 
aptamer-based results. Brie�y, the Olink plasma extension assay technology uses 
DNA oligonucleotide-labelled antibody pairs to bind target proteins; 384 assays are 
performed on 4 separate panels with di�erent dilutions for di�erent dynamic ranges 
of target proteins (total proteins assayed =  1,536). A�er incubation with plasma 
samples, the oligonucleotide pairs hybridize and are extended by DNA polymerase 
to create a unique DNA barcode that is subsequently read out using next-generation 
sequencing. �e median intra-assay CV for the 1,536 proteins was 10.25%, as 
assessed by multiple replicates of a pooled sample included in the experiment.

Genome-wide association studies. We also leveraged existing GWASs of proteins 
to help to determine aptamer speci�city. Genotypes were available for 1,421 
participants in the Malmo Diet and Cancer Study and 759 participants in the 
FHS with existing SOMAscan data59. A meta-analysis of genome-wide association 
analyses was performed to identify variants associated with circulating protein 
levels within 1 MB of the cognate gene, which were considered cis. Analyses 
were conducted on unrelated individuals. �e methods used to generate publicly 
available genetics analyses for SOMAscan data have been described30,60,61.

Framingham Heart Study. Participants in the FHS O�spring cohort who attended 
the ��h examination (1991–1995) and who had previously underwent plasma 
proteomic pro�ling with the SOMAscan single-stranded DNA aptamer-based 
platform (1.1 or 1.3 k-plex assays) were included in this study28,29. A total of 1,909 
participants were included in analyses. Clinical characteristics were obtained from 
FHS investigators.

Validation cohort. �e clinical characteristics and methods to derive baseline 
VO2max from this randomized clinical exercise trial have been described23. Brie�y, 
300 sedentary adults with abdominal obesity were randomized into 3 exercise arms 
and a control group. Of the 217 participants who completed the 24-week exercise 
intervention, 216 had baseline VO2max data and were available as a validation 
cohort. Given substantial di�erences—by design—in clinical characteristics 
between the validation and HERITAGE study cohorts, we restricted our analysis 
to subjects in the validation study with BMI <  40 and age <  55 (n =  91), to more 
closely approximate HERITAGE participants.

Statistical analysis. Baseline clinical characteristics of participants in the 
HERITAGE Family Study, validation study and FHS are reported as means ±  s.d., 
proportions, or medians (interquartile range) according to visual inspection of 
normality. A two-sample Student’s t-test was used to compare cases and controls in 
FHS. All protein values were natural-logarithmically transformed for subsequent 
analyses. Correlations between aptamer-based and antibody-based proteomics 
assays were assessed using the Spearman correlation coe�cient. Linear regression 
was performed to determine the relationship between baseline protein values and 
both baseline VO2max (ml O2 min−1) as well as the changes in VO2max (ΔVO2max, 
post-training VO2max – pretraining VO2max). Covariates in regression models 
included age, sex and baseline values of BMI, body fat percentage, fat-free mass 
(kg),and VO2max (Δ  model only). Protein levels were standardized to mean =  0 
and multiples of 1 s.d. We used the Benjamini–Hochberg procedure to correct 
for multiple comparisons and employed a FDR <  0.1 to determine statistical 
signi�cance for these hypothesis-generating analyses.

We tested for the interactions of generation, sex and race with protein level on 
baseline- and ΔVO2max and adjusted for the other covariates, given previously 
reported di�erences in VO2max trainability among these groups13.

To evaluate the predictive utility of protein biomarkers for relative VO2max 
changes (ΔVO2max/baseline VO2max) a�er exercise training, we performed the 
following analyses. First, we implemented a clinical trait model that included 
age, sex, race and BMI for relative VO2max changes >  15%. We then added 
more than 5,000 proteins to train a more comprehensive model. �e maximum 
number of missing values per protein within the entire dataset was ≤7, and the 
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total number of missing values was <2%. �e data were randomly split into a 
training set (80% of cohort) that uses crossvalidation and a test set (20%) that 
was not used for model development. All preprocessing steps were �rst applied to 
the training set. �e same steps were then carried out for the test set. We used a 
k-nearest neighbour algorithm to impute missing values (k =  10)62. All continuous 
variables were zero-centred and scaled (s.d. =  1). Scaling in the test set was applied 
using the same scaling factors calculated from the training set. �e initial set of 
more than 5,000 predictors (proteins, age, sex, race and BMI) was reduced using 
a constraint-based feature selection algorithm for identifying minimal feature 
subsets (MMPC algorithm63). We then �t elastic net logistic regression models on 
the basis of the remaining predictors. �e hyperparameters of the elastic net were 
optimized for the AUC using a global optimization algorithm. Receiver–operating 
characteristics of the protein score were subsequently calculated, with sensitivity, 
speci�city, positive predictive value and negative predictive value generated. �e 
training performance in the results is the result of repeated tenfold cross validation 
within the 80% training datasets.

GSEA using the full proteomics dataset was performed using the Molecular 
Signatures Database canonical pathways collection (MSigDB, http://so�ware.
broadinstitute.org/gsea/msigdb/collections.jsp), which includes a total of 2,199 
curated gene sets from domain experts64. Signed log-transformed P values were 
computed from the regression models using the coe�cient estimates and P values 
for protein–VO2max associations. �e full proteomic dataset was then ranked by 
their signed P values and used as input for GSEA (v4.0.3, with default parameters). 
GSEA results were exported to Cytoscape for visualization with the Enrichment 
Map tool using the following thresholds for gene set signi�cance (P <  0.05, FDR 
q <  0.15, overlap index >  0.5)65.

For the FHS participants, we performed Cox proportional-hazard regression to 
model all-cause mortality using the proteins that were signi�cantly associated with 
baseline or ΔVO2max and also available in FHS. In age-, sex- and batch-adjusted 
models, proteins that were associated with baseline or ΔVO2max using a FDR 
q <  0.1 were brought forward for stepwise regression to estimate the percentage 
variation in all-cause mortality explained by each protein. Cis variants were 
identi�ed using a linear regression model to assess the associations of variants with 
proteins that had statistically signi�cant relationships with baseline and ΔVO2max; 
statistical signi�cance was set at P <  5 × 10−8. All statistical analyses were performed 
using R version 3.6.2 (R Core Team, R Foundation for Statistical Computing).

Reporting Summary. Further information on research design is available in the 
Nature Research Reporting Summary linked to this article.

Data availability
Deidenti�ed, individual-level proteomics and phenotypic data that support the 
HERITAGE �ndings within this paper are available at https://motrpac-data.
org/related-studies/heritage-proteomics. Overlapping aptamer-based and 
antibody-based proteomics data on the HERITAGE sample are included 
Supplementary Data Table 1. GWAS summary statistics for FHS and JHS are 
available through restricted access via the database of Genotypes and Phenotypes 
(dbGaP), a publicly available resource developed to archive data from human 
studies of genotype–phenotype relationships and can be accessed here (https://
www.ncbi.nlm.nih.gov/gap/; FHS accession number: phs000363.v19.p13; JHS 
accession number: phs000964). FHS proteomics data have also been deposited 
in dbGaP and are available through the same accession number. JHS proteomics 
data have been deposited in the JHS Data Coordinating Center and are being 
deposited in dbGaP (accession number: phs002256.v1.p1); pending its receipt 
in dbGaP, all JHS data are available from the JHS Data Coordinating Center on 
request (JHSccdc@umc.edu). In addition, proteogenetics �ndings (precise SNP 
IDs) included in Supplementary Table 15 from FHS/MDCS meta-analysis and 
JHS have been provided in Tables 2 and 3 in the Supplementary Data, respectively. 
Additional data supporting the �ndings of this study are available from the 
corresponding author upon reasonable request.
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Extended Data Fig. 1  | Secreted proteins positively related to bone homeostasis and baseline V O2max. Functional representation of proteins‘ role in bone 
metabolism and homeostasis. Left and middle: SMOC1 regulates osteoblast di�erentiation. BMPs are related to bone formation via the TGF-ß pathway 
and are mediated by extracellular signalling molecules such as NOG. Right:  simpli�ed schematic of proteins related to cartilage formation and their 
location within cartilage tissue.
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Extended Data Fig. 2  | Receiver-operating characteristic curve for relative V O2max changes with exercise training >  15% using overlapping targets 
between aptamer- and antibody-based proteomic platforms.  7/10 overlapping proteins on both platforms demonstrated moderate-strong correlation 
(SELE, TCL1A, COMP, CREG1, STC1, IL1RL2, LILRA2; ρ=
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